产品详情
基本信息:1756-IF16/A Allen-Bradley ControlLogix模拟输入模块
Allen-Bradley 1756-IF16是一个ControlLogix模拟输入模块。该模块接受电流和电压信号,如10V、0-10V、0-5V和0-20 mA。该模块支持三(3)种类型的信号布线配置,如单端、差分和高速差分布线。在支持的布线配置中,单端布线对噪声最敏感,必须与具有公共接地的信号一起使用。为了提高噪声敏感度,使用差分布线方法,而高速差分布线用于需要相对于输入信号快速更新数据的系统。
使用单端接线,模块成为十六(16)通道模拟输入模块。类似地,当使用差分接线时,该模块被简化为八(8)通道模拟输入模块。此外,当模块作为高速差分接线时,模块成为四(4)通道模拟输入模块。
1756-IF16单个分辨率为320V/计数(15位+符号双极性)@ 10.25V输入范围;160V/计数(16位)@ 0-10.25V输入范围;在0-5.125V输入范围时每计数80V(16位),在0-20.5 mA时每计数0.32 A(16位)。该模块具有变化的扫描时间,例如单端的16-488 ms;使用差分布线时为8-244毫秒,使用高速差分布线时为5-122毫秒。它内置一个采用适马-德尔塔法的模数转换器电路。转换后的数据按照整数模式(左对齐,2 s补码)IEEE 32位浮点数据格式存储。该模块的校准精度优于电压输入范围的0.05%和电流输入范围的0.15%。
1756-IF16可使用三种不同的方法接线,具体取决于用户和应用的要求,如单端接线、差分接线和高速模式差分接线。当所有输入设备都连接到公共接地时,单端接线方法是最佳选择。这是为了将信号输入的一侧与信号地进行比较,以获得差值,然后模块使用该差值为控制器生成数字数据。当应用没有公共接地或可能有单独的信号对时,建议使用差分布线方法。这种布线方法也适用于需要提高抗扰度的环境。差分模式下的通道并不完全相互隔离。如果多个差分输入信号具有不同的电压公共基准,则一个通道可能会影响另一个通道的读取。发生这种情况时,用户应该将输入连接到不同的模块上,或者用隔离输入模块替换非隔离模块。此模式允许8个连接。最后,高速模式差分布线方法可以实现最快的数据更新。但是,用户需要满足某些条件才能使用高速模式。首先,它使用差分布线方法。第二,在这种模式下,只能使用模块上每四个通道中的一个。1756-IF16模块的功耗为2.3瓦,背板总功率为2.33瓦。输入范围为10伏、0至10伏、0至5伏或0至20毫安。
该模块在5.1伏电压下的电流消耗为150毫安,或在24伏电压下为65毫安。底板的额定电压和电流为5.1伏DC,最大150毫安,24伏DC,最大65毫安。输入电流范围从4到20毫安,输入电压范围从-10到10伏,并限制在100伏安。电压功耗约为2.3瓦,电流功耗为3.9瓦。电压的热耗散为7.84 BTU/小时,电流的热耗散为13.3 BTU/小时。它还具有30伏DC(电压)和8伏DC(电流)的最大过压保护。
1756-IF16H
Technical Specifications for 1756-IF16
Manufacturer | Rockwell Automation |
Data format | Integer mode (left justified, 2 s complement) IEEE 32-bit floating point |
Module conversion method | Sigma-Delta |
Removable Terminal Block (RTB) | 1756-TBCH 1756-TBS6H |
Total Backplane power | 2.33 W |
Backplane Current, 24VDC | 65 mA |
Backplane Current, 5.1VDC | 150 mA |
Scan Time | 16 pt single-ended: 16-488 ms; 8 pt differential: 8-244 ms and 4 pt high-speed differential: 5-122 ms |
Settling time | <80 ms to 5% of full-scale. |
Resolution | 320 µV/count (15 bits + sign bipolar) @ ±10.25V; 160 µV/count (16 bits) @ 0…10.25V: 80 µV/count (16 bits) @ 0…5.125V; 0.32 µA/count (16 bits) @ 0…20.5 mA |
Analog signals | ±10V, 0-10V, 0-5V and 0-20 mA |
No. of Inputs | 16 single ended, 8 differential or 4 differential (high speed) |
Brand | Allen-Bradley |
The Allen-Bradley 1756-IF16 is a ControlLogix analog input module. This module accepts current and voltage signals such as ±10V, 0-10V, 0-5V and 0-20 mA. This module supports Three (3) types of signal wiring configuration such as single-ended, differential and high-speed differential wiring. Among the supported wiring configurations, single-ended wiring is the most sensitive to noises and must be used with signals having a common ground. For increased noise susceptibility, differential wiring method is used while high-speed differential wiring is used in systems that require fast data updates, relative to the input signals.
With single-ended wiring, the module becomes a Sixteen (16) channel analog input module. Similarly, the module is reduced to an Eight (8) channel analog input module when used with differential wiring. Furthermore, the module becomes a Four (4) channel analog input module when the module is wired as high-speed differential wiring.
The 1756-IF16 individual resolutions are 320 µV/count (15 bits + sign bipolar) @ ±10.25V input range; 160 µV/count (16 bits) @ 0-10.25V input range; 80 µV/count (16 bits) @ 0-5.125V input range and 0.32 µA/count (16 bits) @ 0-20.5 mA. This module has scan time that varies such as16-488 ms for single-ended; 8-244 ms with differential wiring and 5-122 ms with high-speed differential wiring. It has a built-in analog-to-digital converter circuitry using the Sigma-Delta method. Converted data is stored following integer mode (left justified, 2 s complement) IEEE 32-bit floating point data format. This module has a calibrated accuracy of better than 0.05% of range for Voltage input and 0.15% of range for Current input.
The 1756-IF16 can be wired using three different methods, depending on the user’s and application’s requirements such as single-ended wiring, differential wiring, and high-speed mode differential wiring. The single-ended wiring method is best when all input devices are tied to a common ground. This is for comparing one side of the signal input to signal ground to get the difference, which is then used by the module in generating digital data for the controller. When applications do not have a common ground or can have separate signal pairs, using the differential wiring method is recommended. This wiring method is also for environments where an improved noise immunity is needed. The channels in a differential mode are not completely isolated from each other. One channel may affect the reading of another channel if multiple differential input signals have different voltage common references. When this happens, users should wire the input on different modules or replace the non-isolated module with an isolated input module. 8 connections are allowed in this mode. Lastly, the high-speed mode differential wiring method allows for the fastest possible data updates. However, certain conditions are required for users to be able to use the high-speed mode. First, it uses the differential wiring method. Second, when in this mode only one of every four channels on the module can be used. The power consumption of the 1756-IF16 module is 2.3 Watts and it has a total backplane power of 2.33 Watts. The input range is ± 10 Volts, from 0 to 10 Volts, 0 to 5 Volts, or 0 to 20 mA.
The current draw of this module at 5.1 Volts is 150 mA, or is 65 mA at 24 Volts. The voltage and current ratings of the backplane are 5.1 Volts DC, 150 mA at maximum, and 24 Volts DC 65 mA at maximum. The input current range is from 4 to 20 mA and the input voltage range is from -10 to 10 Volts and limited to 100VA. The Voltage power dissipation is around 2.3 Watts and the current power dissipation is 3.9 Watts. The thermal dissipation for the voltage is 7.84 BTU/hour and 13.3 BTU/hour for current. It also has a maximum overvoltage protection of 30 Volts DC (voltage) and 8 Volts DC (current).
联系人:
➤何姗姗(销售经理)
➤邮箱 :sales@xiongbagk.cn
➤QQ :3095989363
➤电话/微信 :+86-18059884797
你可能感兴趣的:1756-IF16/A Allen-Bradley ControlLogix模拟输入模块
DDK SAN3-24 | ICS TRIPLEX T9402 | SST SST-PB3-CLX |
ABB 5SHY3545L0010/3BHB013088R0001 | ICS TRIPLEX T9451 | MITSUBISHI A1S65B-S1 |
ABB DSQC355A | ICS TRIPLEX T9110 | MITSUBISHI A1S61PN |
A-B 1336-TR-SP4A/A | ICS TRIPLEX T9432 | MITSUBISHI A1SJ51T64 |
KONGSBERG RMP200-8 | REXA SMB9215-1E-1-7725 | MITSUBISHI A1S68DAV |
FOXBORO FBM227 | BENTLY 146031-01 | ABB REF615C_E HCFDACADABC2BAN11E |
ABB SCYC51010 | GE HYDRAN M2 | REXRTOH SYHNC100-NIB-22a/W-24-P-D-E23-A012 |
NI SCXI-1104C | HIMA F8650E | REXRTOH SYHNC100-NIB-22a/W-24-P-D-E24-A012 |
FIREYE 85UVF1-1QDK3 | ICS TRIPLEX T8403 | REXRTOH SYHNC100-NIB-23/W-24-P-D-E23-A012 |
EATON DPM-MC2 | ICS TRIPLEX T8403 | A-B 80026-044-06-R |
EATON MPB1-TP | ABB PP846A 3BSE042238R2 | kongsberg RMP420 |
ABB GJR5252300R3101 07AC91H | ABB PP846 3BSE042238R1 | BENTLY 130539-30 |
ABB GJR5252300R3101 07AC91F | ABB LDGRB-01 3BSE013177R1 | KOLLMORGEN S21260-SRS |
KOLLMORGEN S20660-SRS | GE VMIVME-7750 VMIVME-7750-746001 350-027750-746001 P | Woodward 2301E 8273-1011 |
SCHNEIDER ILS1B853S1456 | ABB PPC905AE101 3BHE014070R0101 | BENTLY 3500/22M |
ABB 5SHY35L4520 5SXE10-0181 AC10272001R0101 | GE IS220PVIBH1A 336A4940CSP16 | REXROTH MSK076C-0450-NN-M1-UG1-NNNN |
GE VME-7807RC VME-7807RC-410000 350-930078074-410000 G | ABB 5SHY3545L0010 3BHB013088R0001 3BHE009681R0101 GVC750BE101 | ABB XO08R2 |
免责声明:
雄霸销售工业自动化零件,包括新产品和停产产品,以及购买此类特色产品通过独立渠道进行。
雄霸不是授权经销商,本网站上特色产品的经销商或代表。
所有产品名称/产品图片,本网站上使用的商标、品牌和徽标是其各自所有者的财产。
带有这些名称、图像、商标、品牌和徽标的产品描述、描述或销售仅用于识别目的,
并不意味着与任何权利持有人有任何从属关系或授权。
——————————————————————————————————————–