4.智能制造的多源异构数据问题
SM811K01 32SE018173R1随着“十三五”期间智能制造工程的推进,我国制造业主要领域的重点企业大多完成了数字化、网络化改造,大多数企业引入了数字化工具和信息化软件,建设了数字化工厂,数据已经逐渐成为企业的一个重要生产要素。然而,数据的价值却始终无法在生产制造和产品的价值中得以体现,尤其是面对复杂的不同来源、不同类型的多源异构数据。
SM811K01 32SE018173R1当前,开展数据分析主要是利用信息系统内的某一类数据,由于缺少解决工业大数据杂乱问题的工具和方法,且不同环节产生的数据具有不同的特性,因此如何解决智能制造的共性数据问题和特质数据问题,如何有效利用这些数据实现智能制造人机协同场景,是数据科学与机械工程交叉研究的一个重点方向。
(1)制造业复杂异构大数据处理与规范化问题 随着传感器、5G网络的普及应用,企业生产数据、操作数据、设备数据、质量数据和物耗能耗数据等均实现了在线采集,工业数据呈现海量式爆发性增长,但是受限于现有技术的有限建模和表现能力,其对复杂异构数据的处理和识别精度无法实现工业数据的价值创造。通过引入数据挖掘和机器学习方法,建立通用性标准化规范模型,统一数据标准,能够更好地识别工业数据特征,解决工业数据大、散、多的问题。
(2)面向全过程数据流的智能排程问题 随着数字化设备在生产线中不断增加,不同设备产生数据的有序流动构成了制造全过程数据流,通过数据流与生产工艺的融合,使得企业排程发生重大变革。对企业生产过程中涉及的计划排程、物料平衡、预测性维护等维度的相关数据信息进行深层次的智能数据采集与挖掘,开展生产计划调度过程中所涉及的柔性装配、准时化生产、混合生产等多种不同业务场景下的智能排程算法建模,能够更好地从不同角度分析企业的各种生产业务指标,并从中发现规律、预警异常、提高应急能力,最终达到监控生产活动、提供生产效率的目的,支撑企业生产平衡。
(3)智能制造人机交互与共融问题 随着智能终端三维处理能力的快速发展和低成本传感显示元件不断涌现,虚拟世界和物理世界可以通过智能终端建立连接。但是由于工业领域大数据的特性,人机交互场景的采集和识别准确率偏低,人机交互效率和交互程度无法满足工业场景的需求,制造的各个环节相互独立、协同性弱又导致了智能设备的通用性较差。通过建立数据流驱动下的人机交互场景,实现虚拟信息技术与实体经济在生产制造全过程和各领域全面、深度、智慧化耦合,通过数据信息的实时更新和精准控制,开展设计、工艺、制造、管理和物流等环节的集成优化建模研究,能够提高制造执行、过程控制的精确化程度,解决人机交互与共融的共性问题。
SM811K01 32SE018173R1结合制造业数据DAAS、数据传输、感知交互等资源,从研发设计、生产制造、工业装配、工业检测和远程运维五个维度建立状态感知、虚拟现实呈现、人机协同及精准执行的企业业务管理,以可视化呈现方式实现数据的自动流动、感知分析、决策执行,实现工业数据虚实融合场景,从而不断驱动、完善并提升生产过程,降低复杂生产系统的不确定性,促进生产过程各维度业务管理水平的螺旋上升,对于加快实现智能制造支撑数字经济发展具有重要意义。